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The principal component analysis has been applied to a data matrix formed by 7 usual substituent 
constants for 38 substituents. Three factors are able to explain 99'4% cumulative proportion of 
total variance. Several rotations have been carried out for the first two factors in order to obtain 
their physical meaning. The first factor is related to the resonance effect, whereas the second one 
expresses the inductive effect, and both together describe 97'5% cumulative proportion of total 
variance. Their mutual orthogonality does not directly follow from the rotations carried out. 
With the help of these factors the substituents are divided into four main classes, and some of 
them assume a special position. 

Several attempts have already been made to determine the optimum linear free 
energy relationship (LFER) describing the substituent effects. If we leave out the 
Taft equation1 - considered classical at present - and the newer relation by 
Yukawa and Tsun02 both of them stemming in fact from the prototype of all LFERs 
- Hammett equation3 , then there exist four approaches to solution of this problem, 
namely those applying the multidimensional statistical methods. 

Thus, in the first place, Swain et al.4 applied the nonlinear least squares treatment 
to a data matrix comprising 14 reaction series and 43 substituents. The reaction series 
are represented not only by the original Hammett O"p,m constants but also by the 
values of 0";, 0":, 0";:; variables and those describing the inductive effect or derived 
for various positions of substituents in the naphthalene skeleton. The substituent 
effects are then expressed by a two-parameter relation where the parameters derived 
are the nonresonance or field constant and the resonance constant. The drawbacks 
of this analysis can be summarized in two points: 1) the data matrix is filled to 38% 
only, whereby the statistical significance of the whole procedure is decreased, and 2) 
the values given for the reactions taking place in the naphthalene skeleton de facto are 
the O"p,m constants which thus appear several times, and also the 3 constants describing 
the inductive effect are of the same nature. The paper by Nieuwdrops treats 76 
selected reactions and equilibria divided into five groups and applies another statis
tical approach known under the name of factor analysis. The respective log (KH/Kx) 
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or log (kx/ kH) are affected by 17 substituents selected in such way that they might 
represent, as far as possible, all possible effects on the course of the given reaction. 
This data matrix is filled to 44%. The results of this procedure show that three 
constants are necessary to describe the substituent effects on the equilibrium or rate 
of the set of reactions studied, these constants being obtained by rotation of the 
factors provided by the factor analysis. The first constant can be compared with the 
Taft CT1 constants and the other with CT~, the significance of contribution of the third 
derived constant depending on the reaction type considered. Haldna et a1. 6 in
vestigated the effects of 24 substituents on rates or equilibria of 10 reactions using 
some methods of factor analysis, too, inter alia the principal component analysis 
(peA) and spectral-isolation factor analysis. The peA gave four factors, if a 100% 
interpretation of the variance is considered. The first one of them, which explains 
89% of the variance, gives a good correlation with CT. Applying the second above
-mentioned method, the authors of this publication found four factors, but only to 
two of them can be assigned a physical meaning. One of them can be correlated with 
the CT or CTo constants, the coh"elation coefficient being decreased with increasing 
number of the factors (2-4) taken into account. This finding is explained by the 
composite nature of these constants. On the other hand, the other factor correlates 
with the CTit constants, hence its meaning can be connected with the resonance 
effect. The last two factors are insignificant, if we realize that they only explain 2% 
and 1 % of the total variance. The data matrix used in the present paper is filled up 
to 100% (after supplying some values by multidimensional regression; the individual 
parameters depend on the reaction type), but there are only 13 substituents proper, 
because 11 of the substituents are considered twice (for meta and for para positions), 
and these are not treated independently in contrast to the procedure given in ref. 5. 

Finally, Wold et a1. 7 carried out peA for 28 substituents using not only the Hammett 
type constants but also others, such as Es constants, n values, and MR values (for 
molar refraction) which are used as descriptors here. Since peA is a considerably 
flexible method, it is almost always formally successful, even in cases where the 
descriptors describe different phenomena, e.g. electronic, sterical, polarizability, i.e. 
those analyzed together in the present paper. However, before the application itself 
of peA, the descriptors were transformed into standard scores (then the variables 
show unit variance), whereby the same statistical significance is a11oted, to all vari
ables. The result of this analysis is two principal components describing 82% of the 
overall variance. 

RESULTS AND DISCUSSION 

The aim of the present paper was to analyze, by means of the peA method, sllch 
a data matrix which would be rid, as far as possible, of all the drawbacks mentioned, 
although it is, of course, perhaps impossible to avoid some of these drawbacks, 
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particularly if a sufficiently large data set must be treated. For this analysis we chose 
the logarithms of relative equilibrium constants of 6 reaction series, one of them 
taking place in the bicyclooctane skeleton and the remaining ones in benzene ring 
(Fig. 1), i.e. the O"j substituent constants (j = I, m, pO, p, P+' PAn' PPh) for 38 substi
tuents covering roughly equally both donors and acceptors; Ph, CH=CHPh, C==,= 
=CPh, and SOMe can be considered to act simultaneously as donors and acceptors8• 

The same substituents differing only in their position are used only for one reaction 
(II), the same kind of reaction is represented by Vand VI and the respective constants 
(1 j (j = PAn' PPh)' and the reasen of it was to ensure an at least partial equilibrium 
between the constants describing the electron-donor and electron-acceptor proper
ties. The values used for the 0": variable for electron acceptors (0"; > O"~) are not 
a result of measurement but were obtained, for the given data matrix, on the basis 
of the fact that 0"; = O"p = O"~. For electron donors (0"; < O"p) it is similarly 0"; = 
(1~, which was also utilized in constructing the data matrix which, on the basis of 
these two presumtions, is then filled to 96'2%. The objectively missing data were 
completed by the stepwise regression procedure, hence this model data matrix is 
completely filled. 

The procedure used in the present report involves, in its last steps, a solution of 
secular problem which is generaJIy equivalent to the diagonalization of matrix, in 
our case the correlation matrix is diagonalized*. This matrix was obtained from 
a data matrix whose elements were transformed into the standard scores at first. 
In this way the R == h;] matrix was transformed into Z == [ZjIJ matrix, their mutual 
relation being R = ZZ/38. In this case the O'j variables had the same significance 
also before the transformation rji ~ Zji was carried out, because they describe 
a very narrow region of phenomena. The first skeleton transmits the pure inductive 
effect, whereas the other one transmits various proportions of the inductive and 
mesomeric effects depending on the nature of reaction centre and position of X 
and or Y. 

The peA model Z = AF (ref.9) was applied to the above-mentioned relation for 
the correlation matrix (A means the factor loading matrix and F means the matrix 
of factor scores), which, under the presumption that the factors are non-correlatable, 
leads to the matrix of reproduced correlations T = AA. As already mentioned the 
results of diagonalization of matrix Z are the respective eigenvalues and eigen-

• The first step of PCA involves a selection of the first-factor coefficients aJl (the elements 
of A matrix) carried out in such way as to make the maximum sum of contributions of this factor 
into the communality. This sum is given by the relation VI = atl + a~l + ... + a~l' and theaji 
,coefficients must be chosen in such way that VI might be maximum at the conditions rjk = 

m 
= L ajpajk; m means the number of factors. These conditions express that the correlations 

p=1 

-observed should be replaced by the reproduced ones where rjk = rkJ. and rjj is the communality 
lit of the Zj variable. The whole procedure is similarly repeated for the other factors. 
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7 

vectors, the eigenvalue expressing the variance explained by each factor (Vp = L afp), 
}=1 

whereas the eigenvectors are directly related to the factor loading matrix (after their 
multiplication by the second square root of the respective eigenvalue of correlation 
matrix) of the 7 x m magnitude where m means the number of factors taken into 
account. The overall variance is then defined as a sum of diagonal elements of the 

m 

correlation matrix (V = L Vp = 7). The squared multiple correlations of the respec-
p=l 

tive valiable with the remaining six variables were taken as the initial values of the 
communalities forming the diagonal of matrix T (in terms of the peA model only one 
iteration is carried out for the calculation of communalities). The diagonalization of 
matrix Z gives the following eigenvalues along with the cumulative proportion 
of total variance (Table I). 

The components obtained represent vectors in a less-dimensional space (m < 7) 
as compared with the space given by the original variables (m = 7). These are 
mutually orthogonal and without any physical or chemical meaning. Hence in order 
to obtain it rotations were carried out which are related to the postulate that the 
communality of each variable is invariant and its square remains constant, too. 
These conditions then allow a derivation of the simplicity criterion whose mini
mization is carried out as the rotation and which can be summarized9 as follows 

(1) 

where the r value and the meaning of apq are decisive for the rotation. If we consider 
vectors in the rotation always mutually orthogonal, then apq are elements of factor 
loading matrix and r E R except for r = 0, 1. The first case represents the so-called 

CH3 /CH3 

COOH COOH 

9C~ 
"C-CI NHH OH 

¢ ~x ¢ ¢ ¢ 
X Y X X X X 

/I /II IV V VI 

6, V=H 6m 6° 6- 6(,An) 6(pf'h1 p p 

X=H 5p 

Flo. 1 

The model reactions used in the analysis 
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quartimax method and the second case the varimax method. However, if apq re
present elements of the factor structure matrix S (S = AC, C is the matrix of cor
relation coefficients between the factors considered), then the rotated factors cease 
to be orthogonal after the rotation and represent a result of oblique rotation, 
r ERin the case of the direct oblimin method and r ~ 0 in the case of direct quarti
min method. The convergence criterion chosen for the rotation was 10- 5 • From 
Table I it can be seen that the two factors are able to explain 97'5% cumulative 
proportion of total variance, the addition of the third one will explain 99,4%. (As 
the rank of the correlation matrix is 5, five factors are formally responsible for 100% 
interpretation of cumulative proportion of total variance.) The rotations were carried 
out for the first two factors, and the significance of the third one obviously cannot 
be rejected either. In the rotation one degree of freedom is consumed by application 
of the simplicity criterion as such, another one is still left. Inspection of Table II 
will reveal that the first factor can be considered as a measure of the resonance effect 
R (the loading of the first factor for 0"1 is the least), whereas the meaning of the second 
factor can be related to the inductive effect I (the largest loading for 0"1)' Therefore, 
the remaining degree of freedom can be consumed by the choice of such r in Eq. (1) 
that it might be a( 0"11) = 0'0, since this constant by its definition does not reflect 
any resonance effect. In other words this means an extraction of the inductive effects 
from the reaction series II - VI. Hence, if two factors are rotated, then this rotation 
is mediated by a transformation matrix of 2 x 2 magnitude. As there is no reasonable 
reason for the above-mentioned factors to be orthogonal, at first we tried an 
oblique rotation with the presumption that a potential orthogonality should follow 
from this rotation. The attempt at reaching a( 0"11) = 0·0 was unsuccessful in the 

TABLE I 

The variance explained for each factor together with the respective cumulative proportion of total 
variance 

Factor 
m 

1 
2 
3 
4 
5 
6 
7 

Variance 
explained 

6'297 
0'527 
0'136 
0'022 
0'018 
0'000 
0'000 
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of total variance, % 

90'0 
97'5 
99·4 
99'7 

100'0 
100'0 
100'0 
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TABLE II 

The matrix A along with the rotated factor loadings (Matrix 8) 

A 8 

j 
Factor 1 Factor 2 Factor 1 Factor 2 

(R) (1) (R) (1) 

0'1 0·820 0·562 0·000 0·994 

O'rn 0·969 0·210 0·520 0·558 
0'0 

p 0·996 -0·044 0·831 0·221 

O'p 0·988 -0·146 0·942 0·080 
0"+ 

p 0·901 -0·355 1·112 -0·228 

O"-(PAn) 0·989 -0·036 0·817 0·229 

0" - (PPh) 0·964 -0·126 0·900 0·101 

Vp 6·297 0·527 4·562 1-468 

TABLE III 

The faotor values for the original variables 

Factor 1 Factor 2 Factor 1 Factor 2 

H -0·406 -1·361 Ph -0·405 -0·802 
Me -0·797 -1·378 CH2Cl -0·297 -0·612 
Et -0·792 -1-408 SMe -0·786 0·099 
i-Pr -0·780 -1·417 CH2Ph -0·693 -1·230 
t-Bu -0·799 -1-445 CH2SiMe3 -1·135 -1·447 
F -0·373 0·960 PO(OEth 1·005 0·277 
Cl -0·092 0·717 CHO 0·917 -0·005 
Br -0·043 0·704 COPh 0·844 -0·002 
I -0·007 0·446 CONH2 0·549 -0·023 
N02 1-667 I-803 S02CF3 2·183 2·053 
CN 1·266 1·330 S02NH2 1-433 0·752 
CF3 0·731 0·531 SFs 1-016 1·356 
OMe -1·141 0·076 SiMe3 -0·315 -1·855 
NMez -1·991 -0·282 P(O)Ph2 0·890 -0·012 
NHAc -0·847 0·018 OPh -0·733 0·616 
NH z -1·719 -0·437 SOMe 0·746 0·948 
Ac 0·986 0·145 CH=CHPh -0·831 -0·620 
COOEt 0·771 0·111 N=NPh 0·572 0·041 
SOzMe 1·405 1·495 C""CPh -0·072 0·036 
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case of orthogonal rotation (a(0'11) = 0·179 for r > 300), whereas in the case of 
oblique rotation a(0'11) = 0,0 for r = 0,123, and cos qJ = 0·692 represents the cor
relation coefficient between these factors (Fig. 2). The results are summarized in 
Table II. In Fig. 3 the rotated loadings bj1 are plotted against bj2 in the cartesian 
coordinate system for each substituent constant. These are divided here roughly 
into three classes, the first one being represented by 0'1> the second by O'm (almost the 
sallie proportion of inductive and resonance effects), and the third one is formed by 
the variables predominantly expressing the resonance effect. However, as far as the 

FIG. 2 

Representation of the rotation with respect 
to the original coordinate system along with 
the communalities of individual variables 

(j-8 

C4 

o 

·0-2 

o 0-8 

FIG. 3 

A plot of bJ1 against bJ2 for each variable 
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A plot of the factor 1 (R) against the factor 2 
(1) for each substituent 
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last group is concerned, u; is somewhat shifted out of it, which obviously has statis
tical reasons. The coefficient of variance is 322· 35 for this variable, whereas for the 
others it varies within the interval (0·7, 1·9) due to almost zero mean value (0·001 89) 
and, on the other hand, to the greatest standard deviation of this variable. Table III 
represents the matrix of factor scores F = F pi (i represents substituents) which is 
already related to the original variables. From Fig. 4, in which both principal com
ponents are plotted against each other for each substituent, it can be seen that 
the substituents are divided into several classes, which is very close to the conclusions 
given in ref. 7. It can be even seen that positions of SMe and NHAc substituents 
agree with the common chemical practice, which was not the case in the paper 
mentioned. These substituents form a distinct group of electron donors. The position 
of OPh is somewhat shifted from that of OMe, and this shift is given, in both its 
absolute value and direction, by IlR and III between Me and Ph. The position of Ph 
shows that this substituent is described by the same model as are alkyl groups, but 
its incorporation in this group is only formal. Moreover, beside the class of electron 
acceptors which form another group, we can observe some substituents with unique 
position. So e.g. SiMe3 has the most negative value of the I component and, therefore, 
does not directly belong to any group. Due to amphoteric behaviour, C=CPh and 
C~~CPh also stand outside the groups mentioned. From this standpoint, SOMe is 
more of an dectron acceptor than electron donor. 

Addition of a third factor into the rotation would mean a further degree of freedom 
which, however, cannot be exhausted practically in any way with respect to the 
composite nature of the constants describing the reactions II - VI. Obviously, it 
cannot be stated generally how many factors are necessary for a description of substi
tuent effects, because everything depends on the reaction type considered. 
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